Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: covidwho-2241426

ABSTRACT

It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. Prototypic pathogens of this type are influenza and SARS-CoV-2, where the receptor-binding protein exhibits extremely high variability in its receptor-binding regions. T cells, known to target many viral proteins, and within these, highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms but are often poorly recruited by current vaccine strategies. Here, we have studied a promising novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP), which was previously recognized for its ability to generate anti-tumor immunity through the induction of potent cytotoxic CD8 T cells. Using a preclinical mouse model, we have assessed an R-DOTAP nanoparticle adjuvant system for its ability to promote CD4 T cell responses to vaccination with recombinant influenza protein. Our studies revealed that R-DOTAP consistently outperformed a squalene-based adjuvant emulsion, even when it was introduced with a potent TLR agonist CpG, in the ability to elicit peptide epitope-specific CD4 T cells when quantified by IFN-γ and IL-2 ELISpot assays. Clinical testing of R-DOTAP containing vaccines in earlier work by others has demonstrated an acceptable safety profile. Hence, R-DOTAP can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Nanoparticles , Animals , Mice , Humans , Influenza, Human/prevention & control , Hemagglutinins , Squalene , CD4-Positive T-Lymphocytes , SARS-CoV-2 , Adjuvants, Immunologic , Vaccines, Synthetic , Vaccination , Cations
2.
Viruses ; 15(2)2023 02 04.
Article in English | MEDLINE | ID: covidwho-2225688

ABSTRACT

Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective in promoting humoral immune responses but are less effective at promoting T-cell immunity. In this study, we evaluated a novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP) as an immunomodulator for subunit vaccines capable of inducing both humoral- and cellular-mediated immunity. Using recombinant protein antigens derived from SARS-CoV2 spike or novel computationally optimized broadly reactive influenza antigen (COBRA) proteins, we demonstrated that R-DOTAP nanoparticles promoted strong cellular- and antibody-mediated immune responses in both monovalent and bivalent vaccines. R-DOTAP-based vaccines induced antigen-specific and polyfunctional CD8+ and CD4+ effector T cells and memory T cells, respectively. Antibody responses induced by R-DOTAP showed a balanced Th1/Th2 type immunity, neutralizing activity and protection of mice from challenge with live SARS-CoV2 or influenza viruses. R-DOTAP also facilitated significant dose sparing of the vaccine antigens. These studies demonstrate that R-DOTAP is an excellent immune stimulator for the production of next-generation subunit vaccines containing multiple recombinant proteins.


Subject(s)
COVID-19 , RNA, Viral , Animals , Humans , Mice , Adjuvants, Immunologic , Cations , COVID-19/prevention & control , Fatty Acids, Monounsaturated , Immunity , Lipids , SARS-CoV-2 , Vaccines, Synthetic/genetics , Antibodies, Viral/immunology
3.
Sci Rep ; 10(1): 17090, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-867590

ABSTRACT

The triterpene oil squalene is an essential component of nanoemulsion vaccine adjuvants. It is most notably in the MF59 adjuvant, a component in some seasonal influenza vaccines, in stockpiled, emulsion-based adjuvanted pandemic influenza vaccines, and with demonstrated efficacy for vaccines to other pandemic viruses, such as SARS-CoV-2. Squalene has historically been harvested from shark liver oil, which is undesirable for a variety of reasons. In this study, we have demonstrated the use of a Synthetic Biology (yeast) production platform to generate squalene and novel triterpene oils, all of which are equally as efficacious as vaccine adjuvants based on physiochemical properties and immunomodulating activities in a mouse model. These Synthetic Biology adjuvants also elicited similar IgG1, IgG2a, and total IgG levels compared to marine and commercial controls when formulated with common quadrivalent influenza antigens. Injection site morphology and serum cytokine levels did not suggest any reactogenic effects of the yeast-derived squalene or novel triterpenes, suggesting their safety in adjuvant formulations. These results support the advantages of yeast produced triterpene oils to include completely controlled growth conditions, just-in-time and scalable production, and the capacity to produce novel triterpenes beyond squalene.


Subject(s)
Adjuvants, Immunologic/chemistry , Influenza Vaccines/immunology , Triterpenes/chemistry , Animals , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/blood , Immunoglobulin G/blood , Influenza Vaccines/chemistry , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL